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N"IT1OXAL ADVISORY C O M M I m  FOR AEXONAUTICS 

ANALYSIS O F  FLUORII!E  -ADDITION TO TEF, VANGUARD FIRST STAGE 

By Willia A .  Tomazic, Harold W .  Schmidt,  and Adelbert 0. Tischler 

The e f f ec t  of adding  f luorine  to   the Vanguard f i rs t -s tage  oxidant  
w 2 s  enzlyzed. An increase  in  specific impulse of 5.74 percent m y  be 
obtained  with 30 percent  f luorine.  This increase,  coxpled  with  increased 
mass r e t i o  due t o  grester  oxidant  density, gave  up t o  29.6-~ercent  l n -  

crease  in  first-stage  burnout  energy w i t h  30 pe rcen t   f l uo rhe  added. 
Hovever, .z chaage in  tank  configuration is required t o  aceomnodate the 
higher  oxidant-fuel ratio necessery  for peak spec i f ic  impulse  with  fluo- 

I -  r ine  addi t   ion.  
f' 
-3 increased  performance of this order c a  be obtained.  without tank- - configuretion change by acdi t ion of u-rlsymnetrical  dinethyl..  hydrazine 

(UDm) t o  the  fuel  coincident w i t h  f l l iorine addition t o  the oxidant. 
With 30 percent  f luorine and approxinately 51 percent UDME€, the  burnout 
energy  can be increased 23.5 cerceat .  

Fluorine  sdditioc w F l l  increase the engine  heat-rejection rate about 
5 percent   for  each I percent  f luorine added up t o  30 percent. 

INTRODUCTION 

ThLs reDort  presents data p e r t i n e n t   t o   t h e  groblem of boosting 
rocket  perforname  by  adding up t o  30 percent   l iquid  f luorine  to   the 
l i qu id  oxyger? of an ex i s t i ag  oxygen-hydrocarbon rocket  engine.  This 
engine powers the first stage of the  Vmgurrd  satel l i te   vehicle .  It 
develops  epgroximtely 27,000 pounds thrus t  at E chzlrber pressure of 
600 pounds per  square  inch w i t h  e thrust-chzmber  specific  impulse of 
258 pound-seconds per pound. 

Data on performame and heat re jec t ion  of rocket  engines  using 
mixtures 02 f luorine and oxygen with  hydrocarbon fue ls   a re   d iges ted  
herein. These drta, primarily  fron 1000- an6 5000-pound-thrust  engines, 
are   extrzpolated  to  the operatiog  conditions of the 27,000-pound-thrust 
Venguard engine. Tktese estimates of perforname  md  heat   re ject ion 
cover  the  rmge of 0 t o  30 percent by  weight of f luor ine  ir t h e   o x i d a t .  

. 
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The e f f ec t  of the  bcreased  specific  iapuise and mass r a t i o  due t o  
adding up t o  30 percent  Tluorine on the  energy of the  vehicle a t  burnout 
is calculated.  Siurplified  vert 'rcal  trajectory  epuatiols  are  used. Sev- 
e r a l   d i f f e r e a t  metho& of loading  the  propellant  tanks, some with tank-  
con2iguration changes  and some witnout,  are  considered. The e f f ec t  of 
addir,g  unsymmetricel  dimethyl  hydraziae (UDlNE) t o  Yne f u e l  t o  compensate 
f o r  t'ne oxidant-fuel voiurne ra t io   sh i f t   o therwise   necessary   to  keep the  
fluorine-oxygen-hydroc&rbon system a t  peek specif ic  impulse is a l so  
presented. 

Operating  experiences  with  fluorine-oxygen  mixtures are discussed. 
Problems and eqerience  in  handling, pumping, and  thrust-chamber f i r i n g  
are reviewed br ie f ly .  

SYMBOLS 

burnout  energy, I"%-lb r"orce/lb nass 

gravitational  conversion  factor,  32.2 f t - l b  nass/(lb  force)  (sec) 2 

accelera%i.cn due t o  gravi ty ,  taken t o  be 32.2 f t /sec2 

height at burnout, f t  o r  miles 

maxi-mum height 

specif ic  imptrlse, (YO force)  (sec) /l-~ loass 

hest-re j ec t ion   ra te ,  Sku/( sec) (sq in . )  

ttme of burning,  sec 

velocity  at   burnout,   f t /sec 

empty weight of vehicle 

gross loaded  weight of vehicle 

weight  of  propellants 

SPECIFIC IMPuiJsx 
TheoretFcal and experimerital hta sho-+i that s igni f icant  gains can 

be made i n  tne  specific  inpulse of er, oxygen-hy6rocarbon rocket  by the 
addition of f luor ine  t o  the oxygen. 

N 

. 
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Theoretical Data 

. 

Tae theore t ica l   spec i f ic  impulse f o r  oxygen-fluorir-e  mixtures up t o  
30 percent f l u o r i n e  burxed  with 53-4 is shown i n  figure 1. These data 
were conputed at the K4CA Lewis laborztory f o r  equilibrium  expansion 
f r o n  600 pounds per  squere  inch  to  atmospheric  pressure. An increase i n  
specific  Inpulse of more than 5 perceat  over  that  with oxygen and  JP-4 
is indfcated  for  30-percent-flxorine  concentration. This increzse is 
r ea l i zed   fu l ly  only if the  oxidant-fuel   ra t io  is shif ted  to   higher   velues  
with  irxrezsing  fluorine  co3tent. For exanple, t he  peak theore t ica l  
speciTic  insulse  for no f luor ine  occurs at ES oxidznt-fuel   ra t io  of 2.43. 
For 30 percent  fllioriae,  the De& occurs a t  .sn oxidant-fuel   ra t io  of 2.94. 

Experimental Data 

Published  emerimental   data  for a Project Hemes engine  conparebie 
ir- t'arust t o   t h e  Vmguzrd first-stage  engine  aze shown in  the  fol lowing 
tab le .  The data are f o r  oxygen-gasoline  burned st approximately 600- 
pounds-per-square-inch chamber pressure (ref. I): 

pig" 28,200 I 614 

f u e l  imgulse, 

2.33 263 
2.08 25 7 

A thrust-chmber  snecific imFulse  of 258 pound-seconds per pound 
(91% of peak theore t ica l )  is emected a t  m o x i h t - f u e l   r a t i o  of 2.2 
in   the  Vznguard engine. Thls oxidant-fuel   rz t io  i s  cons i&ere;bly lower 
t h m   t h e   t h e o r e t i c a l   v a h e   f o r  peak syecif   ic  inpulse of  2.43. The 
speclfLc  impulse is typ ica l  of tiiose currently  being  obtained  with oxygen" 
hydrocarbon  engines. The performeme  obtained at the  NACA Levis  labora- 
tory  with a 1000-poud-thrust  engtne  operated a t  600-pound-per-square- 
inch  chzuber  pressure wi-th 0, 30, md 70 percen t   fho r ine  i n  the  oxidant 
( r e f .  2) is sho-xn in f igure 2. Peak  impulse with no f luorine was epprox- 
ina te ly  258 pound-seconds per pound. This is again  about 9 1  sercent  of 
the  theoretical   value.   Tie peak  impulse occurred at ea ox idmt - fue l   r a t io  
of 2.4.  With 30 percent  f luorine  in  the  oxidmt,   the peak spec i f ic  iu- 
pulse w"as 278 pound-seconds per pound end occ-mred a t  aa oxidant-fuel 
r a t i o  of roughly 3.2. This  value is &bout 93 percent of theore t ica l .  
Wi-Lh 70 percent  f luorine,   the Seak specific  inpulse w a s  287 poun&-seconOs 
per pound, or only  about 88 percent of t h e   t h e o r e t l c a l   p e a .  
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A 5000-pound-thrust  General Electric  engine sLmilar i n  ty-pe to   t he  
Vanguard engine was operated w i t h  0 and 15 perceat   f luorine  ( ref .  3) at 
350-pomd-per-square-inch chmber  pressare. The data  are  shorn i n  f igure 
3. The specific- impulse  values  obtained z t   the   bes t   ox idsn t - fue l   ra t io  
were approximately 92 percent of theore t ica l  a t  tht chzmber pressure. 

Data obtained by North A m e r  icm  Aviat ion  ( ref .  4) with a 300-pound- 
per-square-inch chamber pressure  are shown in   f igure  4 .  !These data cover 
fluorine  comefitrations of 10, 20, 30, 50, and 70 percent  f luorine in  the 
oxidant. 'The performince  with 10 percent  fluorine is 90 percent of theo- f 
r e t i c a l .  With 30 percent   f luorine  the  perfomnce is 95 percent of theo- P 

0 

r e t i c a l .  At higher  fluorine  concentrations  the  performance  ag&in drops 
i n   t e r m  of percent of theoret ical .  The decrease in   e f f i c i ency  at high 
fluorine  concentrations may be   a t t r i bu ted   t o   t he   p re fe ren t i a l  combustion 
of fluorine  with hydrogen (ref.  5). A s  the  fluorine  content  reaches 
appoximately 70 percent,  there is insuf f ic ien t  hydrogen with which the  
fluorine  can combine,  and some may even  escape  utreacted. 

Extrapolation of Data t o  Vanguard  Engine  Performance 

The data  presented i n  f igures  2 t o  4 indicate  that  specific-impulse 
v a h e s   o f ' 9 0   t o  95 percent of theoretical   for  equilibriun  excansion can 
be  achieved  with  oxygen-fldorine  mixtures  burned  with  hydrocarbon  fuels. 
As fluorine  concentrations  in  the  oxfdant  approsch 30 percent ,   s l ight ly  
nigher  perceatages of the  thecretical   perforuance have been  realized 
experimentally. However, for purposes of conservative  extrapolation of 
these data t o   t h e  Vmguard  engine, a v a h e  of 9 1  perceEt of the   theore t ica l  
spec i f ic  impulse for  equilibrium e.xpar,sion has  been  chosen. 

The predicted  experimentel  specific  impulse i s  shown i n   f i gu re  5 as 
a function of o x i d a t - f u e l   r a t i o  and percent of f luorine  in  the  oxidant.  
To obtain m a x i m u m  spec i f ic  impulse as  fluorine  percentage is increased 
requires an increase in oxidant-fuel  ratio.  

Use of UDHH i n  Fuel 

It is possible t o  preserve  the  volumetric ratio of the oxidant t o  
the fuel  by  use of additives t o  the f u e l   t o  comFensate fo r   t he   e f f ec t  of 
fluorine  addition  in  the  oxidant.  Preservation of the  oxidant-fuel 
volumetric r a t i o  w i l l  prevent  extensive  modification of the pump and 
plumbing system. One such fue l   addi t ive  is unsymnetrical  dimethyl hy- 
drazine (UDMEI) . This  f u e l  is par t icu lar ly   a t t rac t ive ,  because it also 
increases  the  specific impGlse of the  pro?ellants. 

Tae e f f ec t  on specific  ihpulse and oxidant-fuel   ra t io  of adding 
various  percentages of UDMH t o  the fluorine-oxygen-hydrocarbon  system 
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was ca lcu la t ed   a t   t he  Lewis laboratory.  Figure 6 shows 9 1  percent of 
peck theo re t i cz l  w i t h  each  propellant  combination.  Tle  constant volumet- 
r ic   oxidznt-fuel   ra t io   corresponaing  to  the present Vanguard configuration 
is shown by the  &.shed curve. Any point 02 this curve  indicates  the 
specif ic  impulse, the IZlel composition,  the  oxidant  composition, and the  
oxidmt-fuel  w e i g h t  m t i o .  For  exmple, a thrust-chamber  specific im- 
pulse of nearly 271 pound-seconds per pound can  be  obtained w i t h  f u e l  
contaLning 43 percent UDME burned with oxyger containirg 20 percent  fluo- 
r ine at the  volumetric  oxidaat-fuel  ratio of the Vanguard configuration. 
These curves we   t heo re t i ce l   o r ly ,   s ince  no experimental   date  for t h i s  
combination of propel lants   are  now avai lable .  

The da ta  of figures 5 m d  6 as applied t o  the V s n g u a r d  engine .me 
sumarized  in  figure 7.  This figure shm-s the increase  in   specif ic  im- 
pulse as a function of the f luor ine  ir? the oxidant  for  three  operating 
conditions: no volumetric oxidant-fuel-ratio chenge with hydrocarbon 
Tuel,  opt  inun  oxidant-fuel  ra-bio wi th  hy&rocarkon fue l ,  and no volumetric 
oxidart-fuel-ratio change with UDMR-hydrocerbon mixtures. For t he   t h i rd  
contiition,  the  anomt of UDME i n   t h e   f u e l   f o r  each  fluorine-oxidant mix- 
t u r e  wes tha t  corresponding to the dashed l i n e   i n  figure 6 .  

Application of Daka t o  Vmguard 

The use of f luor ine  ia t he  Vanguard vehicle  offers two seperate 
advantages in   i rc reas  iing performance : (1) increased  spec if i c  impulse, 
and (2)  improved mass r a t i o   ( r a t i o  of gross t o  enpty w e i g h t )  due t o  
higher oxidant  density. Whereas the s s e c i f i c  impulse Ls a function of 
the  percent  f luorine and the   oxidmt- i luel   ra t io  only, the  mass r a t i o  is 
also influenced by the manner i n  which the teaks are loaded. To illus- 
trEte  the  advantages of using  f luorine,  four different   cases  of tank 
loading heve  been calculated: 

Case 1 maintains  the  original tank configuration a d  gross weight, 
with the   ox idmt- fue l   ra t io   for   each   f luor ine   concent ra t ion   ad jus ted  
for peak specific  inpulse.  To mintain  constant  gross weight,  the  fuel 
tank is o ~ l y   p a r t i a l l y   f i l l e d .  Here, of course,  tnere is no increase  in 
mass r a t i o .  "he increase  in  vehicle  performance is due solely to specific 
impulse. 

Case 2 re ta ins  t'ne original  tank  configuration w i t h  both  tanks 
f i l l e d .  Gross  weight  chaages i n  th i s  case. The oxidant-fuel mass raeio 
a l so  chznges slightly because of' t'ne increasing  density of the oxidant 
as fluorine  concentration  increases.  The oxidant-fuel   ra t io  is less   then 
that requi red   for  peek specif ic  impulse. 
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Tce t i i r d  method of loading  (case 3) reqQires a change i n  tank 
confTgma+,fon t o  maintain to t a l   p rope l lmt  volume but w i t h  b-dividual 
f u e l  a d  o x i d a t   v o l m e s  chulged t o  give  the  oxidant-fuel   ra t io   for   mxi-  
 mu?^ specif'lc Lmpulse in  each  case. With f u l l  tm-ks, t h i s  method gives 
the highest mass r a t i o .  

Csse 4 considers -the e f f ec t  of UilNH a66ed t o   t h e   f u e l .  As mentioned 
previonsly, a concentration of T J D & X K  i n   t he   fue l  nay  be  chosen f o r  each 
fluorine-in-oxygen  concentration t o  give t i e  oxidant - fue l   ra t to   for  rp N 

peak spec i f ic  impulse xi thout  changing t'ne  volume r a t i o  of  the  tanks. 
Because the  &ensi t ies  of the  TJDMH and the hydrocarbon are   near ly   ident ical  
there  is negligible change i n  mass r a t i o  over  case 2. The inrprovemnt 
in   vehicle  perfommnce  over  case 2 is due en t i re ly   to   increased   spec i f ic  
impulse. 

m e   e f f e c t  of f luorine  addition 011 vehicle performance c~ tn  be il- 
lus t r a t ed  by calcuhting  burnout  energies (maximum height) f o r  a simpli- 
f i e d  zero-drag  ver t ical   t ra jectory  for   the first stage from the  following 
e quat  ions : 

Becaase this ca lcubt fon  does not give  correct  absolute  results,  the 
comFzrisons e re  made i n  te rns  of percent  increase ir- vehicle  eaergy a t  
burr,ou-l. Engineering  problelrs nay also necessi ta te  conpromises i n   r a t i o  
of t h r u s t   t o  gross weight. Such compromises a re  beyocd the scope of 
t h i s  smveg. To heLp round  out the   p ic tc re ,  two s e t s  of calculations 
f o r  each propellant loading case were carr ied out: (1) for the  same 
thrust f o r  a l l  cases, and ( 2 )  f o r  a r z t i o  of t h r u s t   t o  gross weight of 
1.2 for a l l  C P S C S .  This acceleration is the  value of the   ex is t ing  Van- 
guard  configurat5on (ref. 6 ) .  Constant  engine  thrust an& spec i f ic  im-  
pulse are assmed  throughout a flight. 

For the  rated  englne  thrust  of 27,000 poxnds ( r e f .  6 ) ,  the  perceat- 
age increase in  t h e   t o t a l  energy of the first stage at ju rnout   for  e l l  
cases is shown in   f igure  8 ( e )  as  e functior, of concentration of f luorine 
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in  the  oxidant.  With 30 percent   f luorine  in   the  oxidest   the   increase  in  
f i r s t - s tage   f ina l   energy   var ied   f ron  10.8 percent for case 2a ( f ixed  tanks, 
nonoptimm oxidant-fuel  rztio) t o  16.1 perceat  for  case  4a (UDm and JP-4 
burned. with  f luorine a d  oxyger at fixed  volumetric  oxidant-fuel  ratio). 
In a l l  cases  the  curves do not  intersect  the  origin,   beczuse  the i n i t i a l  
or   reference  oxidant-fuel   ra t io  is not at the theo re t i ca l  optimum oxidant- 
f u e l  rat io.  

The second set of calculations w a s  made with  the initial acceleration 
of each  vehicle   assmed  to   be 0.2 g2  for  ezch  case. This decreases 
burning time as  compared v i th   t he  f irst  set of celculations.  The re- 
su l t s   a re   g iven  ir figure 8(b) . In t h i s  set of calculations the percent 
increase ia t o t a l  energy  vzried from 11.8 percent for case 1 t o  24.6 
percent  for  case 31 with 30 percent   f luorine  in   the  oxidar t .  Cases 3 b  
end 4b [i.e.,  the  cases of the adjus tab le   re ia t ive  tank volumes and the 
UDm and 53-4 with  f luorine md oxygen at fixed  volumetric  oxidant-fuel 
r a t i o )  gave very  nezr ly   ident lcal   resul ts  (23.5% increase  in  g, for 
case 4b) mder the  essumption oI" f ixed   in i t ia l   ecce le rz t ion .   Resul t s  
of these  calculations are presented in tables I md II. 

PROBUMS IN USING FLUORINE 

Beat Rejection 

Two fac tors   e f fec t ing  the heat   re ject ion in a rocket  engine  using 
fluorine-oxygen  nixtures w i t h  hydroczrbon f u e l   ( s t   c o n s t m t  chanber 
pressure) are the oxidant - fue l   ra t io  a10 the  gercent   f luorine  in   the 
oxifhat.  Experimental data from  several  rocket  engines  burning hydro- 
carbon fuel w i t h  oxygen or  fhorine-oxygen  mixtllres  are shown in   f igures  
9 (a )   t o   ( c )  . Taese f igures   f l lus t ra te   the   e fTcc t  of the  oxidant-fuel 
mixture r a t i o  on the heat  rejection.  Heat-rejection data f o r  5000- and 
18,000-pound-thrust  gasoline-oxygen  er-gines, similar i n  desiga t o   t h e  Van-  
guerd  engine, are shown i n  f igu re  9(d) (re?. 7 ) .  

The values   for  t i e  rate of heat r e j ec t ioa  in  f igu re  9(a) are f o r  a 
1000-pound-tluust  engine  operated at e. cham-oer pressure of 600 pomds 
per  squzre  inch  (ref. 2). The va lues   in   f igure  9(b) are f o r  3000- and 
5000-pound-thst  engines at chmber  pressures of 300 and 500 pouniis per 
square  inch,  respectively  (ref.  4 ) .  The fac t   tha t   the   hea t - re jec t ion  
r s t e s  in both  cmes  are  of doout t h e  same magnitude, despite  chmber- 
pressure  differences,  nay be   a t t r i bu ted   t o  the "hotter"  injectors  used 
in   the  lmger   engines .  

The differeoce  in  vzlues of the  heat rejecti-on between 30 and 70 
percent  f luorlne fs approxi-mately  0.6  Stu/(sec)  (sq in. 1 and is consistent 
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between f igures  9( a) aml (b) over a r a g e  of oxidmt- fue l   ra t io ,  as 
shorn  by t’le following table: 

‘OxidLTt- Per- Heat- &., Eeat- 
~ f u e l  I cent I reJection I €!tu/( sec) 
ka t io   I f luo - I r a t e ,  qJ ~ ( s q  in . )  
I 1 r ine  1 st=/( sec) 

(sq in.) 
( f i g .   9 ( 4  1 ( f i g .  9 ( b ) )  

3.0 1 30 

2.45 30 3.4 

3.2 30 2.25 i 0.50 , 2.10 ’ 

I 2.10 1.95 i o.5c 
70 2.65 I 0*55 2.45 

i 70 2.75 I 2.60 0.50 

I I 0.65 2.80 2*25  I 0.55 
70 

: 3.10 , ! I 
I I t 

3.6 
3.30 70 
2.70 30 2*45 I 0.70 1 0.60 3.15 

I 

The r a t e s  of increase  in  heat  rejection with oxidant-fuel   ra t io  for 
fluorine-oxygen-hydrocarbon  engkes Ln fig-lres 9(a) ane (b) are also 
com3arzble. Tgey crpproxiaaze an increase  of 0 . 1  heatetransfer   uni t  
(Btu/(sec) (sq in . ) )  2er 0.1 oxidant-fuel-ratio  unit  lor 30 percent Tluo- 
rirre. This  car, be shown by subtracting the heat-rejection rates a t  
consecutive  oxidant-fuel  ratios  in tLze preceding table. 

A cross   plot  of aata from faired  curves of figclre 9 ( a ) ,  i l l u s t r a t i n g  
the   e f f ec t s  of f luorine  content 8s w e l l  zs oxidant-fuel  ratio,  is shown 
i n   f i g u r e  10. These data were considered t o  be most represer ta t ive,  
since  they  included the widest range of fluorine coEte2t  unaffected by 
var ia t ions  in   hardxare.  The dominating e f f ec t  of oxidm-t-fuel rz t io  OT? 
heat   re ject ion is show- by t h i s   p l o t .  

Data from ligure 10 were used to  ?lot   the  predicted  sercenf  increase 
in  heat-rejection rzte 2or Vie Vangumd f i r s t - s tage   engine   in   f igure  11. 
This f igure  then  predicts  the percent  lncrease  in  heat  rejection  that  can 
be expected at any oxidaxt - fue l   ra t io   for   fhor i re   concent ra t ions  up t o  
30 percent,   in  terms of the  heat-rejectior?  rate  without  f luorine  in  the 
oxidznt. The Seat-rejection rate zt an oxi&aat-fuel   ra t io  of 2.2 and 0 
percent   f luorine is taken as the  reference  Foint on t h i s  p lo t .  

Figure 11 indicates that a 30-percept  increase i n  heat  rejection 
w i l l  r e s u l t  from using 30 percent  f luorine iz the oxidant  with hy0ro- 
carbon f u e l  at the  oxidant-fuel   ra t io  lor highest  specific  inpulse.  

IP 
N s? 
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No experimental   he&brejection date a r e   m a i l a b l e   f o r  simultaneous - f luorine and UDME adcition t o  hydrocarbon-oxygen propellants.  

Operating  Experience  with  Fluorbe 

The addFtion oT fluorine  introcuces problems new to oxygen-hydrocarbon 
engine sys t em.  Its corrosivity  czuses  severe  bearing end s e a l  problems. 
It is toxic  i n  both its elenental  state and es hmogen  f lxoride,   the  
most corn011 combustioa sroduct.  However, f luor ine  can  be  hmdled  sefely 
with proDer care.  

In  dilute  f luorine-oxygen  solutions,   t ie  effects mentioned a re  
somexhat a t terxated.  i n  reference 3, Teflon  parts were used  in  the 
flm- l i nes  exposed t o  e 15-percent-fluorine - 85-percent-oxygen mixture. 
These parts  Ceteriorated  only  very  slowly.  Teflon  exposed t o  a flow 
of pure  f luorioe  disintegrates  very  rEpiUy. A t  present, however, 
qumt i t a t ive  knowledge of the  corrosivi ty  of  low-concentration  fluorine- 
oxygen mixtures is very  neager. 

Seals.  - The problem of s t a t i c  and. ro ta t ing   sea ls   for   f luor ine   use  
has  been  extecsively  investigated  (ref.  8 ) .  The behavior of a number 
of lneterials,   both  plastic and metall ic,  w e s  stuaied i n   t e s t   r i g s  and 
a l s o  as pump-shrft seals, impellers, and volutes  during  rocket test 
f i r ings.   In   general ,   the   res is tznce of ne t a l l i c   me te r i a l s   t o   f l uo r ine  
is excellent.  To date,  however, no p l a s t i c  has  been  found e n t i r e l y  
su i tab le   for   use  w i t h  l i q u i d   f l u o r i n e .   l t e r i a l s  such as Kentaniun (a  
cernet of titmium carbiae and powdered n icke l ) ,  Norbide  (boron carbide),  
n i t r e l loy ,  and hard chrome p la t e  hzve  been  found sa t i s fac tory  for use 
i n  fluorine  putupshaft   seals where rubbing or su r face   f r i c t ion   ex i s t s .  
Lz'oyrinth-type shaft sea ls  hzve  been tes ted  in l iquid  f luorine  wlth 
se t i s fac tory   resu l t s .  These consisted of s o f t  t i n  and s i l v e r   l i n e r s  
with en interTerence f i t  on a s e r r a t e d   s t a i n l e s s - s t e e l   p m p   s h d t .  
Operational  failures  occurred, hok-ever, i f   t h e   l i n e r   m a t e r i a l  was not 
completely  Tree of impurit ies  or if there was excesslve  mechanical  in- 
terference between tlie p u p   i - e l l e r  &nd the lebyrinth l i n e r .  Pure 
l iqu id   f luor ine  has been successfully pumped in  a sa l1  centr i fugal  pump 
using  these  metsll ic seals. On the  basis  of this  work, it would seem 
qui te   poss ib le   to  pump low-concen5ration  fluorine-oxygen  mixtures fn  
rocket-engine  systems. 

Eandling. - Beczuse of its toxici ty ,   f luorine  nust   be   hmdled  in  
enclose&  systems. To prevent  boiioff,   l iquid-fluorine  tanks can be 
suspended Fn liquid-nitrogen  baths. A transportable  system  capable of 
s tor ing  l iquid  f luorine  Fndefini te ly  under liquid  nitrogen  has been 
developed ( r e f .  9), azd loss experiments  have  been  conducted (ref. 10). 
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In  the  case of missile  tanks, however, ni t rogen  jacketkg  vould be 
imprecticnl. Zere precooling  of  the  oxidant  and  the  use of z discardable - 
reflux cocdensor on the  veat ::ne  may of fer  &T ansxer. 

Another  unsolved  problen is the  dispose1 or dispersion of toxic 
fluorine  exlaust   procucts at v e h i c l e   t e h o f f .  It seems t h a t  the Ses t  
soiution would ?x t o  keep the  surroundlng  area  clear of personnel  during 
takeoff md u n t i l   t n e  resicha1 exhaust fumes have  dispersed t o  a safe 
concentration. Nore study  of  thiE problem is needed. 

Tne predictions  of  specific  impulse and heat-reject ion  ra tes   re-  
su l t i ng  from the  use of f luor lne  in  the  oxidant of m oxygen-hydrocarbon 
rocket  system sre based on l imited experiEentai data. Tne experlmental 
data indrcste that specific-in?alse  values of 9 1  percefit of the  theo- 
r e t i ca l   va lue  of e q u i l i b r i m  expanstor, can be achteved.  Predictions of 
Vsnguard vehicle  serformaace  based on these  specif  Lc-inpulse  vslues 
show t h a t  gains  in  vehicle  energy at first-stage  burnout xp t o  24.6 per- 
cent  can be rea l ized  by adaing  fluorine t o  t'ne oxidant. To fully r ea l i ze  
the  potent iai  gain  in performance necessitates  operat  ion at increasing 
oxidant-fuel nass ratLos as the  f luorine  concentration is increased. 
This, of  course, may ictroduce  cooling problems as w e l l  as necessi tc te  
pum? znii plumbhg  rezesiga. The use of UDXEI ir, t h e   f u e l  In afidition t o  
the   f luor ine  Ln the  oxidant caI: reduce  the  necessity  for  extensive 
plumbicg  changes while preserving a d  even  enhancing  the  perfomace. 
An increase of 6.79 pe rcen t   i n   qec i f i c  impulse caTr be  obtained t h i s  m y  
compared w L t h  5.74 percent  obtained at optimum oxidmt-fuel  r&tio  without 
UDMH . 

The ir-crease in  heat-rejection rate 8s f luorine is d d e d   t o   t h e  
oxidmt  mey be expected t o  Se about 1 percent  per  percent of f luorine 
a&ded at ox ihn t - fue l  rat'Los  corresponding t o  peak  specific  impulse. 
The increase is  due p r i m a r i l y   t o   s h i f t  of t3e optinum oxidant-fuel   ra t io  
to   higher   (hot ter)   values   ra ther  tha7 dce to   t ke   f l uo r ine  i tself .  There 
is a comsiderable  aargin of coolan%  heat-capacity  reserve a t  the  heat- 
re jec t ion  rates mt ic ipa ted .  No heat-rejectLon h t a  are ava i lgb le   for  
U!lMI- - JP-4 mixtures with fluorine-oxyge_r,  mixtures. 

Pure  liquid.  fluor b e  :has bee2 punqed prevlozsly.  Tierefore, the 
Cevelopment of   seals  i n  flov systems for   the  diLute   f luorine ir, oxygen 
solutions  cppears t o  o f f e r  no insumvmtzble   d i f fccul t ies  . Storage 
vessels for l iqu id   f luor ine  have a l so  been  Ceveloped.  Loading t e c h i q u e s  
and exhsust-gas  disposal are pro'oiems requiring  study end 5evelopnent. 
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The vehicle  performance  hcrease  resulting from the  add'rtion of 
f luorine t o  the Vanguard f i rs t -s tage  oxidant  was c d c u l e t e d   f o r  a zero- 
drag ver t i ca l   t r a j ec to ry .  The following  table lists the  burnout-energy 
increase  for  f luorloe  addition : 

1 Fixed  vehicle gross w e i g h t ;  
optimm  oxidsnt-fuel  rEtio; 
constant tirust and in i t i a l   acce l e ra t ion  

2e Fixed t m k  configurstion; 
nonoptinum oxiamt- fue l   ra t io ;  
constvlt  t h m s t  

2b Fixed  tank  cozlfiguration; 
nonoptimum oxidaEt-I'uel r a t io ;  
fixe6 in i t i a l   acee l e re t ion  

3a Fixed. to-Lzl tank volurre; 
optimrlm oxidant-r"ue1 ra-LLo; 
constant thrust 

3b Fixed   to tz l   t an4  vol7me; 
optiaum  oxidEnt-fuel  ratio; 
f i xed   i n i t i a l   acce l e ra t ion  

1 
" 

L 
" 

" 

f 

P l u o r i m  
i n  
oxidant, 
percent 

10 
20 
30 

~ 

10 
20 
30 

10 
20 
30 

10 
20 
30 

10 
20 
30 

Increase 
i n  
burnout 
esergy, 
percent 

4.15 
7.98 
11.82 

3.25 
6.93 
10.75 

5.16 
11.03 
17.24 

5.46 , 10.27 
15.23 

24.55 

Ir! order t o  =void  both  the changes i n  tm-ks and t'ne changes in 
voluuetric flow ra t io   necessary   for  peak perfomance vi-Lh f luorine 
aiidition to   the  oxidant ,  UDXH may be added t o  %he fue l .  The following 
table shows the  eZfect of can'o'rned UDMX and f luorine addition: 

C&se Fluorine ir 
oxidant, 

percent 

&a Fixed  tank  cofliguration; 
o~tinum oxi&m.t-fuel rakia; 

10 

30 constant thrust  
20 

CD PLxed tenk configuretion; LO 
opt inm  oxidat-fueL  ra t io;  20 
l ixed  b i t i a l  acceleration 30 - 
c 

UOMH in 
burnout energy, fuel ,  
Increase  In 

percent percent 

33.8 6.97 
43.1 11.78 
51.4 16.67 

33.8 a .7e 
83. L 16.06 
51.4 23.50 
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Experiments show that fluorine  addition w i l l  increase  the  engine 
heat-rejection rate about 1 percent  for  eac3 1 percent  f luorine added 
up to 30 percent. The use  of uD,yIH in  addition will probably  not su’c- 
s t a n t i a l l y  alter t h i s  figure, although tests hgve not  yet  been made. 
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:percent 

spec11'lc 

! 

I I 

-1 "_ 
0 
5 
10 

20 
IS 

30 
25 

"_ I 1.142 

1  .I72 
I. 158 

I. 18B 
I. 204 
1 .219 
1.235 
." - 

254 a 
257:2 I 1:::; 251.2 2.05 1.110 
261.B 3.06 1.00 

3!). 9.5 
40.95 
41 .S8 
42.45 
45 .ll 
45.85 
44.66 
." 

2. $'OO 
2.493 
P.567 
2.663 
2.748 
'.'.USA 
2.940 
"" ." - 

261.2 
960 .o 

263 ..5 
:!65. b 

270.3 
268.1 

712.8 

6.26  a145 1 7.96 1213 I 7.!)8 

6.25 

9.77 agR2 
11 .85 4562 

R.7!5 
11. 02 

1 

I 
10  1.172 
5 1.158 

15   1 .188  
2.74G 280.1 
2. O J C  2'70.3 
2.240 27'2.H ". ." 
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TABLE IT. - PERFORMANCE OF VANGUARD FIRST STAGE WIT'II YLUORIIE ADDITTON TO OXIJIANT AND UDMH ADDTTIOIJ TO THE IWEL 

U T l M I 1  i r  
Pue '1 , 
perccnl 

I. " 

. . -. 
Oxidant" 
speci  fJ c 
gravi ty  

I t lons .  

I T  
l b - s ic  

Increaoe - G I  n13.v~ 
In  pro- 
spec i f ic   pe l lan t  

percent 
j mpulm, weight 

"" - 
R a t i o  
or 

weight 
gross 

to 

welght 
empty 

3 u X  Burn- 'Incrense 
Lng out i n  
time,  valoc- burnout 

- - -" 

scc lt.y, veloc- 
f t /sac l ty ,  

I .  I perient  

"_ 
Case 48: Yixrd tank  configurntion; optlmum oxJdnnt-luel  ratio;  constant  Lhrust I 

"_ 
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Oxidant-fuel weight r a t i o  

Figure 1. - ICheorcLicsl specific hpu:Lse (equilibrium composiLion during expansion from 600 lb/sq in .  to 
atm. pressure) for fluorinc-oxygen mixtures  with JP-4 f‘uel. 
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Oxidant-fuel weight r a t i o  

Figure 2. - Specific impulse as function of oxidmk-fuel weight ratio for an NACA 1000-pound-thrust  engine 
a t  600-pound per-square-inch-a'bso.luke chamber pressure using: (3.)  oxygen ana JP-4, ( 2 )  SO percent 
fluorine, 70 percent oxygen, and Jp-4, and (3)  70 percent  fluorine, 30 percent oxygen, and ;Tp-4 (ref'. 2) .  



Oxidant-fuel.  weight  ratio 
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Figure 3. - Specific impulse as function of oxidant-fuel  weight  ratio for a  General  Electric 
5000-pound-thrust  engine at 350-pound-per-square-inch absolute chamber  pressure using: 
(1) oxygen and JP-4 and (2) 15 percent  fluorine, 05 percent q g e n ,  and Jp-4 (ref. 3). 
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Oxidant-fuel weight r a t i o  

Figure 4. - Specific impulse as function of oxidant-fuel weight r a t i o   f o r  a North American Aviation 
3000-pound-thrust  engine  operated at  300-pound-per-square-inch-absolute chamber preosure using a 
se r i e s  of oxygen-fluorlne  mixtures with JP-4 (ref. 4). 
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Oxidant-fuel weight r a t i o  

Figure 5. - l'redicted experimental specific impulse for Vanguard f i r s t - s tage  engine with  fluorine  addikion 
(91 $ of equilibrium  theoret5.cal specific impulse at  600 lb/sq in. absolute  chmber pressure assumed). 
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Oxidant-fuel weight ratio 

Figu_re 6. - Predicted  specific  impuse as function of oxidant-fuel 
r e t i o  with fluorine and UDMR eddition t o  Vangmrd first-stage 
thrust c u b e r  (91% specific-Lmpuulse efficiency assmed). 



Fluorine in oxidant, percent 

Figure 7. - Predicted  increase in experimental  specific impulse with 
fluorine  addition  for Vanguard first  stage. 
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Fluorine  in  oxidant,  percent 

(a) Thrust  constant, a t  27,000-pound rated value. 

Figure 8. - Predicted  increase i n  burnout energy with 
fluorire addition  for Vanguard f irst  stage. 
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Fluorine in oxidant,  percent 

(b) Ratio of thust  t o  gross weight  constant a t  1.2. 

Figure 8. - Concluded. Predicted  increase in burnout energy with fluorine 
addition f o r  Vanguard first stage. 



(b) Fluorine-oxygen rnlxtwco with JP-4 (ref. 6). 

Figure 9 .  - Experimental heat-rejection  rate as Punctlon of oxldnnt-fuel weight ratio.  



(c) 15 Percent  fluorine and 85 crcent oxygen and Jp-4; chamber pressure, 350  pounds per  square 
inch; thrust ,  5000 pounds (1 P sil icone in fuel) (ref. 3). 
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(d) Hydrocarbon fuels  and oxygen (ref .  7). 

Figure 9. - Concluded. Experimental  heat-rejection  rate as function of midant-fuel weight ra t io .  
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Fluorine in oxidant, percent 

Figure 10. - Heat-rejection rate as function of percent  fluorine 
i n  oxidant. Chamber pressure, 600 pounds per square inch; 
thrust, 1000 pounds. (Based on data at 0, 30, and 70% fluorine, 
ref.  3) .  



Oxidant-fuel ratio 

Yi’igure ll. - Predicted increase i n  experimental heat-rejection rate with fluorine added t o  axidant i n  
Vanguard first stage. 
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